[Python] Đừng dùng vòng lặp nữa – mà dùng Vectorization!

Sử dụng Vectorization – Một sự thay thế siêu nhanh cho các vòng lặp trong Python Giới thiệu Loops đến với chúng ta một cách tự nhiên, chúng ta tìm hiểu về Loops trong hầu hết các ngôn ngữ lập trình. Vì vậy, theo mặc định, chúng tôi bắt đầu thực hiện các vòng lặp

Sử dụng Vectorization – Một sự thay thế siêu nhanh cho các vòng lặp trong Python

Giới thiệu

Loops đến với chúng ta một cách tự nhiên, chúng ta tìm hiểu về Loops trong hầu hết các ngôn ngữ lập trình. Vì vậy, theo mặc định, chúng tôi bắt đầu thực hiện các vòng lặp bất cứ khi nào có một hoạt động lặp đi lặp lại. Nhưng khi chúng ta làm việc với một số lượng lớn các lần lặp lại (hàng triệu/ hàng tỷ hàng), sử dụng các vòng lặp là một tội ác. Bạn có thể bị mắc kẹt trong nhiều giờ, để sau đó nhận ra rằng nó sẽ không hoạt động. Đây là nơi mà việc triển khai Vectorisation trong python trở nên siêu quan trọng.

Vectorization là gì?

Vectorization là kỹ thuật thực hiện các phép toán mảng (NumPy) trên tập dữ liệu. Trong nền, nó áp dụng các phép toán cho tất cả các phần tử của một mảng hoặc chuỗi trong một lần (không giống như vòng lặp ‘for’ thao tác một hàng tại một thời điểm).

Trong bài viết này, chúng ta sẽ xem xét một số trường hợp sử dụng mà chúng ta có thể dễ dàng thay thế các vòng lặp python bằng Vectorization. Điều này sẽ giúp bạn tiết kiệm thời gian và trở nên ‘pro’ hơn trong coding.

Vấn đề 1: Tìm tổng số số

Đầu tiên, chúng ta sẽ xem xét một ví dụ cơ bản về việc tìm tổng các số bằng cách sử dụng các vòng lặp và Vectorization trong python.

Dùng vòng lặp

import time 
start = time.time()# iterative sum
total =0# iterating through 1.5 Million numbersfor item inrange(0,1500000):
    total = total + item

print('sum is:'+str(total))
end = time.time()print(end - start)#1124999250000#0.14 Seconds

Dùng Vectorization

import numpy as np

start = time.time()# vectorized sum - using numpy for vectorization# np.arange create the sequence of numbers from 0 to 1499999print(np.sum(np.arange(1500000)))

end = time.time()print(end - start)##1124999250000##0.008 Seconds

Vectorization mất ít thời gian hơn ~ 18 lần để thực hiện so với lần lặp lại bằng cách sử dụng hàm phạm vi. Sự khác biệt này sẽ trở nên đáng kể hơn khi làm việc với Pandas DataFrame.

Vấn đề 2: Hoạt động tính toán (trên DataFrame)

trong khi làm việc với Pandas DataFrame, các nhà phát triển sử dụng các vòng lặp để tạo các cột dẫn xuất mới bằng cách sử dụng các phép toán. Trong ví dụ sau, chúng ta có thể thấy các vòng lặp có thể được thay thế dễ dàng như thế nào bằng Vectorization cho các trường hợp sử dụng như vậy.

Tạo DataFrame

DataFrame là dữ liệu dạng bảng dưới dạng hàng và cột. Chúng ta sẽ tạo một pandas DataFrame có 5 triệu hàng và 4 cột chứa đầy các giá trị ngẫu nhiên từ 0 đến 50.

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,50, size=(5000000,4)), columns=('a','b','c','d'))
df.shape
# (5000000, 5)
df.head()

image.png

Chúng ta sẽ tạo một cột mới ‘tỷ lệ’ để tìm tỷ lệ của cột ‘d’ và ‘c’.

Dùng vòng lặp

import time 
start = time.time()# Iterating through DataFrame using iterrowsfor idx, row in df.iterrows():# creating a new column 
    df.at[idx,'ratio']=100*(row["d"]/ row["c"])  
end = time.time()print(end - start)### 109 Seconds

Dùng Vectorization

start = time.time()
df["ratio"]=100*(df["d"]/ df["c"])

end = time.time()print(end - start)### 0.12 seconds

Chúng ta có thể thấy một sự cải thiện đáng kể với DataFrame, thời gian được thực hiện bởi hoạt động vectơ hóa nhanh hơn gần 1000 lần so với các vòng lặp trong Python.

Vấn đề 3: Các câu lệnh IF-Else (trên DataFrame)

Chúng ta thực hiện rất nhiều hoạt động yêu cầu sử dụng loại logic ‘if-else ‘. Chúng ta có thể dễ dàng thay thế các logic này bằng các hoạt động vector hóa trong Python. Chúng ta hãy xem xét ví dụ sau để hiểu nó tốt hơn (chúng ta sẽ sử dụng DataFrame mà chúng ta đã tạo trong vấn đề 2): Hãy tưởng tượng chúng ta muốn tạo một cột mới ‘e ‘dựa trên một số điều kiện trên cột cũ ‘a’.
Dùng vòng lặp

import time 
start = time.time()# Iterating through DataFrame using iterrowsfor idx, row in df.iterrows():if row.a ==0:
        df.at[idx,'e']= row.d    
    elif(row.a <=25)&(row.a >0):
        df.at[idx,'e']=(row.b)-(row.c)else:
        df.at[idx,'e']= row.b + row.c

end = time.time()print(end - start)### Time taken: 177 seconds

Dùng Vectorization


start = time.time()
df['e']= df['b']+ df['c']
df.loc[df['a']<=25,'e']= df['b']-df['c']
df.loc[df['a']==0,'e']= df['d']end = time.time()print(end - start)## 0.28007707595825195 sec

Thời gian thực hiện bởi phép toán Vectorization nhanh hơn 600 lần so với các vòng lặp python với các câu lệnh if-else.

Vân đề 4 (nâng cao): Dùng trong Machine Learning/Deep Learning Networks

Deep Learning đòi hỏi chúng ta phải giải nhiều phương trình phức tạp và điều đó cũng cho hàng triệu, hàng tỷ hàng. Chạy các vòng lặp trong Python để giải các phương trình này rất chậm và Vectorization là giải pháp tối ưu.

Ví dụ: để tính giá trị của y cho hàng triệu hàng trong phương trình hồi quy đa tuyến tính sau đây:
image.png

chúng ta có thể thay thế các vòng lặp bằng Vectorization. Các giá trị của m1, m2, m3… được xác định bằng cách giải phương trình trên bằng cách sử dụng hàng triệu giá trị tương ứng với x1,x2,x3… (để đơn giản, chúng ta sẽ chỉ xem xét một bước nhân đơn giản)

Tạo data

import numpy as np
# setting initial values of m 
m = np.random.rand(1,5)# input values for 5 million rows
x = np.random.rand(5000000,5)

image.png

image.png

Dùng vòng lặp

import numpy as np
m = np.random.rand(1,5)
x = np.random.rand(5000000,5)

total =0
tic = time.process_time()for i inrange(0,5000000):
    total =0for j inrange(0,5):
        total = total + x[i][j]*m[0][j] 
        
    zer[i]= total 

toc = time.process_time()print("Computation time = "+str((toc - tic))+"seconds")####Computation time = 28.228 seconds

Dùng Vectorization

image.png

tic = time.process_time()#dot product 
np.dot(x,m.T) 

toc = time.process_time()print("Computation time = "+str((toc - tic))+"seconds")####Computation time = 0.107 seconds

np.dot thực hiện phép nhân ma trận Vectorized trong phần phụ trợ. Nó nhanh hơn 165 lần so với các vòng lặp trong python.

Kết luận

Vectorization trong Python là siêu nhanh và nên được ưu tiên hơn các vòng lặp, bất cứ khi nào chúng tôi làm việc với các bộ dữ liệu rất lớn. Bắt đầu thực hiện nó theo thời gian và bạn sẽ trở nên thoải mái với suy nghĩ dọc theo dòng với code của bạn.

Kham khảo

https://medium.com/codex/say-goodbye-to-loops-in-python-and-welcome-vectorization-e4df66615a52

https://towardsdatascience.com/how-to-speedup-data-processing-with-numpy-vectorization-12acac71cfca

Nguồn: viblo.asia

Bài viết liên quan

WebP là gì? Hướng dẫn cách để chuyển hình ảnh jpg, png qua webp

WebP là gì? WebP là một định dạng ảnh hiện đại, được phát triển bởi Google

Điểm khác biệt giữa IPv4 và IPv6 là gì?

IPv4 và IPv6 là hai phiên bản của hệ thống địa chỉ Giao thức Internet (IP). IP l

Check nameservers của tên miền xem website trỏ đúng chưa

Tìm hiểu cách check nameservers của tên miền để xác định tên miền đó đang dùn

Mình đang dùng Google Domains để check tên miền hàng ngày

Từ khi thông báo dịch vụ Google Domains bỏ mác Beta, mình mới để ý và bắt đầ